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Abstract—This paper presents a fully multilevel approach to
parallel in time solution of transient power system simulations.
The method employs a multigrid reduction algorithm in time
parallelized using the MPI distributed memory programming
model. The method is demonstrated on a simple Single Machine
Infinite Bus differential-algebraic equation model problem, for
which speedup is obtained for as few as 8 processing cores on
a problem with 10,000 time steps. Speedup of a factor of 13
is observed for a 100,000 step version of this simple problem.
Based on these results, we expect significantly better speedup on
larger problems where more work is available to each processor
allowing greater amortization of the parallel communication.

I. INTRODUCTION

Time-domain simulations of power system dynamics are
currently used for a number of different purposes. Dynamic
contingency analysis examines a few seconds after some event
or sequence of events, though many such events might be
tested. Small signal stability tests the response of a system
to small stimuli checking for instabilities. Other applications
look at the control actions and system response. Renewable
energy ramps and cascading events require simulations over
the course of minutes or even hours. For some of the ap-
plications faster than real-time simulations are necessary for
timely response to conditions, and to test or explore the
impact of real-time control actions. In other applications faster
simulation time would allow for higher resolution models or
additional scenarios. Significant speedups to dynamic power
system simulation could have an important impact on the way
the grid is controlled and could enable new applications and
uses inside grid control facilities, particularly if a large enough
model could be simulated faster than real-time.

High performance parallel computers can enable significant
speedups in these simulations. One strategy for parallelization
of time-domain simulations has been to parcel out the system
components over the processing cores (spatial decomposition)
[1], [2]. The main challenge with this strategy is the develop-
ment of an effective distributed memory parallel linear solver.
These solvers are an active area of research [3], [4], and no
solver has yet proven to be fully effective.

Another strategy for parallelization of these systems is to
decompose time into subintervals and distribute these over
the processing cores. This parallel-in-time approach is also
an active area of research in many fields where it has been
shown to give substantial speedup. The first significant method
of this kind for power systems was developed in [5], [6].

It used a relaxation/Newton method where groups of time
steps were solved together as a coupled system, and multiple
groups were solved in parallel. The relaxation was done on
a sequence of finer and finer temporal grids in a multilevel
nested iteration approach. More recently, researchers have
looked at the parareal algorithm which is a two-level parallel-
in-time method. In [7], the parareal algorithm was applied
to a partitioned solution method for transient power systems.
In that work, the parallel-in-time method was shown to be
effective compared to the relaxation Newton method.

In this paper, we study a different approach to the parallel-
in-time method called multigrid reduction in time [8]. Multiple
levels of coarsening in time are used, and the method is
applied to the full differential algebraic equation (DAE), not
just the differential portion within a partitioned approach.
We first describe the method in more detail and discuss its
implementation based on the open-source code XBraid [9].
We then provide parallel performance results for a model
problem and finish with conclusions and plans for future work.

II. PARALLEL IN TIME METHOD

Research on parallel-in-time methods started with the work
of Nievergelt in 1964 [10]. Since then, a variety of approaches
have been developed, including the parareal method mentioned
in the introduction [11]. However, relatively little work has
been done in this area overall, especially considering that more
than 50 years have passed since it was first explored. For a
recent review of the literature, see [12]. The method considered
here is called multigrid reduction in time (MGRIT) [8]. It
is based on multigrid reduction techniques [13], [14] and is
relatively non-intrusive on existing codes. When restricted to
two grid levels, it is equivalent to parareal.

Let u(t) be the solution to some time-dependent problem
(for example, a DAE) on time interval [0, T ]. Let ti = iδt, i =
0, 1, ..., N be a temporal mesh on that interval with constant
spacing δt = T/N , and let ui be an approximation to u(ti).
A one-step time discretization is then given by

u0 = g0, ui = Φi(ui−1) + gi, i = 1, 2, ..., N. (1)

A traditional time stepping method solves for u1 through uN

in sequence. To motivate the MGRIT approach, first consider
the simple linear case where each function Φi is a matrix.



Fig. 1. Fine grid (ti) and coarse grid (Tj ) for coarsening factor m = 5. The
coarse grid induces a decomposition of the fine grid into C-points (red) and
F -points (black).

Then time stepping is equivalent to a forward solve of the
block linear system Au = g given by
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The idea is to replace the O(N) sequential time stepping
method with an O(N) multigrid [15] iterative solver that is
highly parallel. One well-known direct method for solving
tridiagonal systems is cyclic reduction. The MGRIT multigrid
method is a kind of approximate block cyclic reduction
algorithm that utilizes a sequence of coarser temporal systems
to accelerate the solution of the fine grid problem in (2).
Although the above motivation assumes a linear system, the
algorithm applies to the full nonlinear setting. It is also
important to note that we solve the same discrete space-time
system as in (1); that is, MGRIT converges to the solution
produced by sequential time stepping on the finest grid.

The coarse grids in MGRIT are formed from the original
fine grid by successively coarsening with factor m > 1.
The coarsening of a grid induces a decomposition of that
grid into two sets called C-points (points that align with the
coarse grid) and F -points (everything else). Figure 1 provides
an illustration in the case of the finest grid level. With this
decomposition in hand, we can describe relaxation and coarse-
grid correction, the two main components of multigrid.

Relaxation alternates between so-called F-relaxation and
C-relaxation. F-relaxation updates the F -point values ui on
interval (Tj , Tj+1) by propagating the C-point value umj

across the interval using the time propagators Φi in sequence.
Although this is a sequential process, the F-intervals are
independent from each other and can be computed in parallel.
Similarly, C-relaxation updates the C-point value umj based
on the F -point value umj−1, and these updates can also be
computed in parallel. From this, so-called FCF-relaxation is
just a composition of successive F-, C-, and F-relaxations.
Simple injection is used to transfer values between grids
(Step 2 and Step 5 below).

The two-grid MGRIT algorithm is then as follows:
1) Apply FCF-relaxation to A(u) = g.
2) Restrict the fine grid approximation and residual to the

coarse grid: u∆,j ← umj , r∆,j ← gmj −A(u)mj .
3) Solve A∆(v∆) = A∆(u∆) + r∆.
4) Compute coarse error approximation: e∆ = v∆ − u∆.

Fine
grid

Coarse
  grid

Fig. 2. Multigrid V-cycle (left) and F-cycle (right). Cycles represent the order
in which different time grids are visited in the recursive MGRIT algorithm.
Going down to a coarser grid corresponds to step 2 of the MGRIT algorithm,
while going up corresponds to step 5.

5) Correct u at C-points: umj = umj + e∆,j .

6) Apply F-relaxation.
The multilevel algorithm uses the two-grid method in a recur-
sive fashion to solve the system in Step 3. A variety of standard
multigrid cycling strategies may be applied, including V-
cycles and F-cycles (see Figure 2). For a fairly comprehensive
reference on multigrid methods and techniques, see [15]. One
important aspect of MGRIT is that the user only needs to
define Φi, which corresponds to the original time stepping
method. Hence, most of the original code can be used as is,
making the method relatively non-intrusive.

It is insightful to compare and contrast the MGRIT approach
to some of the previous work done for power systems. In the
interest of space, we mention only two methods here, one early
[5], [6] and the other more recent [7].

The method introduced in [5] was well ahead of its time and
was one of the first to demonstrate potential for speeding up
power grid simulations with a parallel-in-time approach. Like
MGRIT, the algorithm uses a sequence of coarse grids and
coarse-grid problems. It does nested iteration in an effort to
provide better and better initial guesses on each grid level,
starting on the coarsest grid and moving up the hierarchy
to the finest grid. A variety of relaxation/Newton methods
were studied as the iterative solver on each grid level [6].
MGRIT differs primarily through the FCF-relaxation scheme
and the different grid cycling strategies used. In general, nested
iteration with relaxation will not produce an optimal O(N)
algorithm and more complex cycling strategies such as F-
cycles (Figure 2) are needed.

The method in [7] is based on the popular parareal algorithm
[11]. Like MGRIT, parareal is also non-intrusive and easy to
integrate with existing serial time-stepping code, and as men-
tioned above, it is equivalent to MGRIT when using only two
time grids and just F-relaxation. The work in [7] demonstrates
the potential for speedup in power grid simulations by running
serial code and assuming that parallel communication costs are
negligible. In general, scalability of multigrid algorithms in
parallel requires more than two grid levels. A more extensive
discussion of this along with detailed parallel performance
analyses can be found in [8], [16].

III. IMPLEMENTATION

In this section, we detail the implementation of the MGRIT
algorithm for power grid problems. Power grid simulation



involves the solution of differential algebraic equations (DAE),
whose most general formulation is

F (t, y, ẏ) = 0, y(0) = y0, (3)

where the Jacobian ∂F
∂ẏ may be singular. Implicit Runge-Kutta

methods are used as time integrators. An s-stage Runge-Kutta
method is given by its set of coefficients (Ai,j), (bi) and (cj)
for i, j = 1..s. Let yn represent an approximation of y(tn).
Then the computation of yn from the previous step yn−1 is
given by yn = yn−1 + h

∑s
i=1 biKi where Ki are solutions

of the following nonlinear problem (see [17])

F

tn−1 + cih, yn−1 + h

s∑
j=0

ai,jKj , Ki

 = 0, (4)

for i = 1, ..., s. Although not necessary, for this paper we
made the choice to use the same time integrator for each grid
level. This integrator is a diagonally-implicit, five-stage and
fourth-order Runge-Kutta method, developed by Cash in [18].
The nonlinear system arising at each time step is solved by
a Newton solver and requires the evaluation of the Jacobians
∂F
∂y and ∂F

∂ẏ . They are evaluated with finite differences and
updated only once at the beginning of each time step. The
relative tolerance required for the Newton solver is 10−8 and
all linear systems are solved by a direct solver (Lapack LU
factorization). All these methods are implemented in C++.

The implementation of our parallel MGRIT solver was
done via the open source software library XBraid [9], which
was designed to be relatively non-intrusive on existing codes.
Using it mainly requires writing a step function that produces
the action of Φi in (1), and that step function is usually just
a wrapper around the original time stepping routine. In our
case, the step function solves the nonlinear problem (4).

To save on memory, XBraid only stores solution values
at C-points. It also employs techniques to overlap commu-
nication and computation in each of the major components of
the MGRIT algorithm (e.g., relaxation). This is done by first
posting a non-blocking receive from the processor to the left,
then beginning computation with the right-most F -interval so
that a non-blocking send can be posted as soon as possible to
the right processor. While this communication is completing,
computation is done on the interior of the processor’s interval.

IV. RESULTS

We present here our first results of the parallel-in-time
algorithm for power system simulation. We focus on a fairly
basic model problem. The problem is an order 2 Single
Machine Infinite Bus (SMIB) model and consists of six state
variables. More details about the model can be found in [19].
The model equations are

δ̇ = Ωb (ω − 1)
ω̇ = 1

2H (Pm − Pe −D (ω − 1))
0 = vq +Rs iq − e′q + (x′d − xl) id
0 = vd +Rs id − (x′d − xl) iq
0 = Pl + V

xd
sin θ − PG

0 = Ql − V 2

xd
+ V

xd
cos θ −QG

, (5)

TABLE I
VALUE OF THE PARAMETERS USED FOR THE NUMERICAL SIMULATIONS

Ωb H D Rs Pm
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Fig. 3. Two components of the solution over the time interval [0, 25].

where the intermediate variables are defined by
Pe = (vq +Rs iq) iq + (vd +Rs id) id
PG = vq iq + vd id
QG = vq id − vd iq
vq = V cos (δ − θ)
vd = V sin (δ − θ)

. (6)

Two of the unknowns are differential variables (δ and ω) and
correspond to the angle and rotational speed of the generator.
The last four are algebraic variables (iq , id, V and θ). Both iq
and id refer the currents in the generator, and V and θ represent
the voltage and phase angle of the bus. The system as a whole
represents how a simple generator responses to local variations
while connected to a stiff network represented by the infinite
bus. This model includes several parameters whose values are
summarized in Table I. Most of the parameters relate to the
generator model, (xd, x′d,and xl) are the generator impedences,
Rs is the winding resistance, D is a damping coefficient, Pm

is the mechanical power input to the generator, and H is an
inertial constant. The base frequency is Ωb and the real and
reactive load is Pl and Ql. The initial values of the unknowns
at time t = 0 are determined as follows:

• ω(0) = 1 and ω̇(0) = 0
• PG(0) = 2Pl and QG(0) = Ql

• All equations in (5) are satisfied, except the third.
• The third equation in (5) determines the value of e′q .

Note that with these values of parameters, the model remains
valid, i.e. the generator stays within a stable regime. No
partitioning technique is used here, and the MGRIT algorithm
is applied to the full DAE system. Some components of
the solution are represented in Figure 3. The solution is
characteristic of a sudden load reduction on the system at time
0. The generator output power oscillates from the change in
loading and the oscillations are slowly damped settling on a
new equilibrium with a higher voltage and a further leading
angle, as one expects from this situation.



The scalability of the algorithm is studied for two step sizes
and intervals of integration. In the first case, the system is
integrated over the interval [0, 10s], and 10, 000 points in time
are used on the finest grid. These values lead to a time-step
size of 1 ms. This simulation is clearly not computationally
expensive since it runs sequentially in about one second.
However, the simulation duration and time step size are similar
to those used when running contingency analysis scenarios.
We see that some speedup can still be achieved on this problem
indicating this method will allow full use of a large-scale
machine when one has more processing cores than scenarios.
To highlight the potential of this method, the second test case
we study corresponds to the integration of the system over the
interval [0, 50] with 100, 000 points in time.

The scalability of the MGRIT method depends on several
parameters, including the type of cycle used, the number of
levels, and the coarsening factor. Since a sequential run is
executed on the coarsest grid in XBraid, having many levels
improves scalability. On the other hand, increasing the number
of levels increases the cost of an iteration since more levels
implies more function evaluations. One way to overcome this
cost issue is to use a larger coarsening factor, thus reducing
the cost of the coarse grid. The number of levels is also
limited by the stability of the time integrator. It must remain
stable on the coarser grid, although alternate integrators with
greater stability can be applied on the coarse grids. For our
experiments, we used F-cycles (Figure 2). Recall that the
MGRIT algorithm converges to the initial sequential time
stepping algorithm, so all previously mentioned parameters do
not influence the accuracy of the method. The only parameter
governing the accuracy of the method is the absolute tolerance
used to stop the iterations. Here we took 10−8 as the stopping
criteria for all simulations.

All computational experiments were run on the machine
“Cab” at Lawrence Livermore National Laboratory. This ma-
chine is an Intel Xeon-based system with over 1,200 compute
nodes, each having two 8-core CPUs in a shared memory
configuration. Parallel communications are made through MPI
(Message Passing Interface).

A. 10s simulation, 10, 000 time points

Table II shows, for various coarsening factors, the maximum
number of levels used in the MGRIT algorithm and the
minimum number of processors required to overcome the ad-
ditional cost of the multigrid method relative to time stepping
(crossover point). One can see that the required number of
processors to reach the sequential time decreases with the
coarsening factor. This behavior was expected since a large
coarsening factor reduces the additional cost of the multigrid
method. Figure 4 represents the time to solution as a function
of the number of processors. The horizontal dashed line is the
reference (sequential) time to solution. The crossover point
corresponds to the intersection with this reference time, and
from this point, speedup can be achieved. The maximum
speedup we obtained for this very small case is about 5. This
speedup is achieved sooner (at a smaller processor count) with

TABLE II
COARSENING FACTOR AND NUMBER OF PROCESSORS TO REACH

CROSSOVER POINT WITH SEQUENTIAL RUN

Coarsening factor 2 3 4 5
Max number of levels 7 4 3 3

Crossover point 18 8 6 5

1 2 4 8 16 32 64 128 256

10−1
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101

# Processors

R
un

 ti
m
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Coarsening factor of 2
Coarsening factor of 3
Coarsening factor of 4
Coarsening factor of 5
Reference (sequential) time

Crossover point

Fig. 4. Evolution of the time to solution with respect to the number of
processors. Best achievable speedup is about 5 for this 10, 000 point example.

a large coarsening factor. In our example, 64 processors with
a coarsening factor of 5 produced the best speedup, but a
speedup was also observed even with 8 processors. Beyond
128 processors, the run time stagnates and no more speedup
can be obtained. At this point, communication between pro-
cessors becomes preponderant (there are only ∼ 80 time points
per processor on the finest grid).

Even though the problem is quite small, some speedup can
be obtained with this parallel-in-time technique. Moreover, up
to a certain limit, XBraid shows good scalability. Note that
for this problem, the convergence of the multigrid process is
extremely fast, and only two iterations are needed to reach the
desired precision (10−8).

B. 50s simulation, 100, 000 time points

In this second test case, we increase the number of points
in time, as well as the duration of integration. On the finest
grid, the time step size is now 0.5 ms. The sequential time to
solution for this problem is about 10 seconds. From Table
III, one can see that the crossover point remains almost
unchanged from the previous case. Moreover, the scalability of
the algorithm is improved. Figure 5 shows the time to solution
for coarsening factors of 2 and 4 with different numbers of
processors. The achieved speedup is about 13 in this case.
Again, at some point communication costs take precedence
over computation costs, leading to stagnation in the total run
time. For this case, it happens around 512 processors.



TABLE III
COARSENING FACTOR AND NUMBER OF PROCESSORS TO REACH

CROSSOVER POINT WITH SEQUENTIAL RUN

Coarsening factor 2 3 4 5
Max number of levels 8 5 4 3

Crossover point 20 9 7 6

1 2 4 8 16 32 64 128 256

100

101

102

# Processors

R
un

 ti
m

es

Coarsening factor of 2
Coarsening factor of 3
Coarsening factor of 4
Coarsening factor of 5
Reference (sequential) time

Fig. 5. Evolution of the time to solution with respect to the number of
processors. Best achievable speedup here is about 13. Problem size is 100, 000
points in time.

V. CONCLUSIONS

In this paper, we presented a new approach for parallelizing
power system simulation. This approach uses a multigrid re-
duction technique to achieve parallelism in the time dimension.
This allows a significant speedup to be achieved compared to
sequential time stepping. In addition, it enables the use of
many more processors than when parallelizing only in space.
This is the direction future computer architectures are taking.
We used the XBraid implementation of the MGRIT algorithm
as a non-intrusive library. First results on a very basic test case
show that speedups can be obtained even on small problems
as are common in contingency analysis. Although both the
serial and parallel methods implemented here were our own,
the speedups are indicative of what can be achieved by using
XBraid and the MGRIT algorithm together with an existing
production power grid code. The strong scaling of the method
would likely be slightly worse, because a more optimized
code would result in relatively larger communication costs. On
the other hand, production problems also involve more work
per processor, which would have the opposite effect. Next
steps include implementing and benchmarking more complex
scenarios to further assess potential benefits and drawbacks
of this method for power system simulations. Although the
results here involved a relatively small problem, experience
with much larger PDE problems on up to 65K cores [8], [16]
supports the case that good parallel performance on larger
power grid systems is achievable. Convergence of MGRIT on
these systems, however, is a more open research question.
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